Processing and Properties of Carbon Black- Filled Electrically Conductive Nylon-12 Nanocomposites Produced by Selective Laser Sintering

نویسنده

  • S. Athreya
چکیده

Electrically conductive polymer composites are suitable for use in the manufacture of antistatic products and components for electronic interconnects fuel cells and electromagnetic shielding. Selective laser sintering (SLS) was used to investigate the fabrication of electrically conductive nanocomposites of Nylon-12 filled with 4% by weight of carbon black. The effect of laser power and the scan speed on the flexural modulus and part density of the nanocomposite were studied. The set of parameters that yielded the maximum flexural modulus and part density was used to fabricate specimens to study the tensile, impact, rheological and viscoelastic properties. The electrical conductivity of the nanocomposite was investigated. The densities and the microstructures of the nanocomposites were studied using optical microscopy and scanning electron microscopy (SEM). The morphology of the nanocomposites was investigated using X-Ray diffraction (XRD) and differential scanning calorimetry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Polymer Nanocomposites for Rapid Prototyping Process

This paper presents initial development of polymer nanocomposites (PNC) material for rapid manufacturing (RM) application. PNC materials containing a polyamide (PA) and nano particles (5wt%) were produced by solution blending with the aim to improve the mechanical properties. Commercial polyamide 6 (PA6) was dissolved in formic acid (HCO2H) together with two different types of nano particle mat...

متن کامل

Percolation threshold of carbon nanotubes filled unsaturated polyesters

This paper reports on the development of electrically conductive nanocomposites containing multi-walled carbon nanotubes in an unsaturated polyester matrix. The resistivity of the liquid suspension during processing is used to evaluate the quality of the filler dispersion, which is also studied using optical microscopy. The electrical properties of the cured composites are analysed by AC impeda...

متن کامل

Thermal Influence of CNT on the Polyamide 12 Nanocomposite for Selective Laser Sintering.

The thermal influence of carbon nanotubes (CNTs) on the PA12 in the laser sintering process was assessed by physical experiments and a three dimensional simulation model. It appears that, by adding the CNTs into the PA12 matrix, the thermal conductivity increased. A double ellipsoidal heat flux model was applied to input a three dimensional, continuous moving, volumetric laser heat source. The ...

متن کامل

Effect of polyamide 6 on the morphology and electrical conductivity of carbon black-filled polypropylene composites

Carbon black (CB)-filled polypropylene (PP) with surface resistivity between 106 and 109 Ω sq-1 is the ideal antistatic plastic material in the electronics and electric industry. However, a large amount of CB may have an adverse effect on the mechanical properties and processing performance of the material, thus an improved ternary system is developed. Blends of CB-filled PP and polyamide 6 (PA...

متن کامل

Friction stir welding of Al-Al2O3 nanocomposite with bimodal size of alumina reinforcement produced by spark plasma sintering

Solid state joining of powder metallurgy (P/M) processed and sintered by spark plasma sintering through friction stir welding (FSW) was studied. The nanocomposites were prepared via mechanical milling followed by spark plasma sintering. The microstructural and mechanical of the joints were evaluated as a function of the different processing parameters such as rotating and advancing speeds of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009